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1. Phys A: Math. Gen. 25 (1992) 2641-2648. Printed in the UK 

On Verlinde's formula for the dimensions of vector bundles 
on moduli spaces 

J S Dowker 
Depanment of Theoretical Physics, Sehuster Laborataly, University of Manchester, 
Manchester MI3 9PL UK 

Received 10 October 1991 

Abstract Explicit expressions are given for the dimensions of vector bundles associated 
wilh the SU(2) Wws-Zumino-Willen model according to Verlinde's formula. 

1. Introduction 

Verlinde (1988) has given a formula for the dimension of a certain vector bundle, 
Vg+, over the moduli space of an n-punctured Riemann surface, C, of genus g. 

The formula has been used by Killingback (1990) and Witten (1991) to obtain the 
volume, 1R,.1, of the moduli space R, = Hom(rr,(C),  G) of flat G-bundles over C 
or, equivalently, of the moduli space of semi-stable holomorphic bundles Over E. 

In connection with the SU(2) Wess-Zuminc%Witten model, Thaddeus (19w) has 
employed the formula to discuss the complete cohomology of such a moduli space. 
Explicit algebraic results were obtained in terms of Sums of powers of cosecs. These 
have been encountered previously (Dowker and Banach 1978, Dowker 1989) and we 
wish here to make some further, elementary remarks and to draw attention to some 
existing results in the literature. 

2. Verlinde's formula 

The SU(2) Wess-Zumino-Witten model, at level IC, is a sort of truncated and dis- 
cretized SU(2) theory containing only those spins, j that satisfy 0 < j < k / 2 .  The 
compact, genus-g Riemann surface, C is marked at n points, z;, with irreducible 
representations of SU(2) labelled by their dimensions l i .  The vector bundle Vg,n is 
denoted by V ( g ;  zir  I ; )  and Verlinde's formula can be written 

where ~ ~ ( 0 )  = sin l 0 /  sin 0 is the SU(2) character of the l-representation and 0, = 
mr/(IC + 2). Setting any l i  to unity Temoves that marked point. We also note the 
relation 
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2642 J S Dowker 

where Bi = l i r / ( k  + 2). 
Witten (1991) immediately takes the 'classical' limit, k + W, of (1) but it h 

possible to give an explicit expression for any k. We shall be amtented with giving 
the two-pointed form d(g ;  l , , l , ) .  

Setting m - k + 2 - m in (1) shows that there h no mixiig of fermions and 
bosons. That is, either both of 1, and 1, are even, or both are odd. Then, rewriting 
the product of sines, we have 

in terms of the twisted msec sums 
P-1 

s , ( p ,  r )  = cos ( y )  cosec2g (:) . 
I=1 

(4) 

Because of the mod p periodicity in r it is convenient to restrict T to the range 
0 < r < p - 1 and, if necessary, to adjust ( 1 ,  - 1 , ) /2  and (11 + 1,)/2. We also note 
the symmetry S , ( p , p -  r )  = S,(p,r)  and set 1 ,  2 1, without loss of generality. 
Symmetrization on the l i  can always be performed at the end, if desired. 

Various incidental identities can be found from simple trigonometric relations. 
For example, the expansion 

sin" x = A; cos 2122 
l%=O 

with 

and 

simple cases of which are 

and 

s,-,(P,o) = (3s,b,o) - 4 s , ( p , l )  + s,(P,~)). 
It is interesting to remark that the sums S,(p,O) are the values of the Laplacian 

C-function on the discretized circle, ( 2 ? r / p ) Z , ,  at the negative integers. The relevant 
eigenvalues being sin'(?rl/p), with appropriate normalization. 

Incidentally, for twisted boundaly conditions on the discrete circle, the eigenvalues 
are s i n Z ( r ( 1 +  a ) / p ) ,  (0 < a < 1). It would be nice to relate the twisted sums, 
S , ( p , r ) ,  to the twisted C-function by some discrete C inversion formula. 
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3. Evaluation of the sums 

Some history of sums like (4) has been given in Dowker (1989) and further comments 
can be found in the appendix. 

A simple contour argument allows S, to be rewritten, for g 2 1, as 

where 6 = r / p  - $ and r is a small clockwise loop around the origin. 
Being a residue, the polynomial character of S, is immediately apparent. The 

evaluation is carried out in Dowker (1987). More recently, Zagier (1990, unpublished 
letter) has also discussed the untwisted ( r  = 0) case and Thaddeus (1990) has 
similarly evaluated the sum relevant for a twisted SO(3) bundle ( r  = p / Z  for p 
even). The method is similar to our own. 

Although S, can be written as a generalized (higher-order) Bernoulli polynomial 
(defined in Norlund 1924, for example), it is often more convenient to exhibit the 
structure in terms of polynomials in p and T. An expansion of the integrand in (6) 
yields 

(7) 
1 9 

S , ( p , r )  = (-1)9+’ 
k=Q 

where the coefficients D$:-)2k are given in terms of the higher-order Bernoulli poly- 
nomials €&-)( z) (Norlund 1924) by 

D(Z9) - 2 2 g - 2 k B 8 ( 2 ’ )  
2 , - 2 k  - 2 g - 2 k ( g )  

~,, jO’j  are even poiynominis Uf degree 2k in 6, 

D2,(6)  = 22kB2,(6’) 

where 6’ = 6 + f = r / p  and E?, is a standard Bernoulli polynomial. The quantity 
D 2 , ( 6 ) p Z k  is thus a homogeneous hipolynomial of degree 2 k  in p and r. How the 
resulting total expression (7) is organized depends on the use to be made of it. 

Interest attaches to the infinite p limit. Using the elementaly cases 862,) = 1 
and B Z 9 ( 0 )  = B,, it is easily shown that 

as p - CO, assuming that r is held finite. 

Then, 
On the orher hand we may wbh to !et T tend to infinity wch ma1 ?-/p - a. 

We have used this before (Dowker and Jadhav 1989a,b) where o( had the interpreta- 
tion of an Aharonov-Bohm flux. 

Some explicit, i.e. numerical, untwisted forms are given in Dowker and Banach 
(1978), Dowker (1989) and in Stanley (1979), which reference was unknown to me 
until recently. The twisted expressions can be obtained from the formulae in Dowker 
(1987a,b). 
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4. Generating functions 

A generating function for the untwisted sums is effectively given in Fisher (1969) (see 
our appendix) and one can be found in Stanley (1979). This latter has also been 
derived by Zagier (1990, unpublished letter). We will develop a formula directly from 
the contour integral (6). Simple algebra yields 

m 

s ( c ; P , ~ )  = C s i n Z g ( C / p ) S , ( p , r )  
g= 1 

under the condition I sin(C/p)l < Isin(z/p)l  which implies that the poles a t  t = kc 
are inside the contour. Hence, shrinking r, one finds the generating function 

with 6 = r / p  - {. 

5. Use of the sums 

In this section we use the sums to discuss the questions outlined in section 2. If 
p, = k + 2, is allowed to tend to  infinity (the classical limit) we will recover the 
results of Killingback and Witten. Restricting attention for the time being to the zero 
pointed case, these authors show that the volume of the moduli space is given by 

From (1) we have 

and, using the limit of S(p; r )  found in section 4, it is readily shown that 

agreeing with the authors just cited. 
This can be expressed in generating function terms. For the scaled dimensions, 

a generating function is defined, in the zero pointed case, by 

2(<)  = Csin 'g- ' (C/( l i  + 2 ) ) 6 ( g )  
m 

g=z 

= s inZg(C/(k+2))Sg(  k + 2 ;  0) = 1 -(k+ 2) tan(C/( k + 2))  cot C. 
# = I  

(15) 
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men simple algebra produces, 

in agreement with the previous result, (14). 
The two-pointed expression (3) is explicitly written 

1 k + 2  1 
2 ( 2 ) ( 2 k ) ! ( Z g - Z k ) !  

d ( g ;  l l , l z )  = ( - l ) g t l -  __ 
k=O 

where 6- = (11 - 1 , ) / 2 p  and 6+ = (11  + 1 , ) / 2 p .  

l i a / ( k + 2 )  -t 0; then the leading behaviour is 
In the classical limit we have to decide what happens to 1 ,  and 1,. If we say that 

and the volume of moduli space, ~72E(01,0 , )~ ,  is the coefficient of k39-' in this 
expression. 

The one-pointed expressions can be found by setting 1,  = 1 in (17) and 8,  = 
~ / p  + 0 in (18). Thus, expanding the B,, in (18) and using B ; , ( z )  = 2gB,,-,(x), 
one finds the leading term 

where 1,  ir odd. (The other terms in (17) contribute lower powers of k.) 
The volume ~ R z ( l l ) l  is the same as that derived by Witten who employs the 

Hunvitz <-function, the values of which at the negative integers are just the Bernoulli 
polynomials, (as shown, essentially, by Hunvitz (1882) himself.) 

Acknowledgment 
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Appendix 

In this appendix we give some further history of sums like (4) and also some ancillary 
material that may be useful. 

Eisenstein (1847) defines the sums 

and give Several results and relations for them. 



2646 J S Lbwker 

Euler had shown that (2,~) = n2cosec2(nz)  and (4,s) = T4(C08eC4(nz) - 

In terms of the Epstein C-function 
gcosec "nz)) by purely trigonometrical means. 

1 m 

Z ( s , r )  = (20) 
m=-m Iz + mlb 

az(zn ,  .) 
ax Z ( Z n , x )  = ( 2 n , z )  and = -2n(2n+ 1,z). 

The relation of Z to the Hurwitz C-function is 

a z ( s 3 z )  
ax = -s(cR(l + s , z )  - C R ( l  + s, 1 - x ) ) .  

Another way of writing (10) and (11) is 

t an  (i) (24) 
cos (2nrmlp )  cos(2C6) P-1 

= 1 - p  ($) sin2(nm/p)  - sinz(</p)  sin C sin2 
-.=! 

which is a standard summation (e.g. Wahba (1968), Hansen (1975)) and can be proved 
directly using partial fractions (see later) as well as in many other ways. 

A further generalization of (24) is equivalent to the generating function given by 
Fiher  (1969). The following derivation is given for variety. A hown formula is 
(Bromwich 1926): 

4P E (s in2 ( x ( m + o ) / p )  + s i n h 2 y  =2(cosh(2py)-cos(2acr)).  (25) 
m=O 

%king logs, and differentiating with respect to y, gives 

(26) 
P-1 1 - sinh(2py) 1 
m=O c .  sln2 ( r ( m  + a ) / p )  + s i n h 2 y  - 2p sinh(2y)  cosh(2py) - cos (2na )  

which generalizes (24) for r = 0 (if y = iC/p) and is another standard formula. 

differentiating 
The generating function given by Fisher (1969) follows on setting y = 0 and 

P-1 
In sin ( n ( m  + a ) / p )  = (1 - p) In 2 + In sin na (27) 

m=O 

with respect to a to produce sums of the form 

P-1 

cosec"(n(m+ a j j p j  
m=O 

This means, for example, that we can evaluate the C-function on the discrete circle, 
mentioned earlier, at positive, as well as at negative, integers. 
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A general physical interpretation of the formulae (24) and (26) is in terms of 
image sums and they commonly occur in many areas (e.g. Lukosz 1973, Smith 1990). 

Relatedly, the summation (2.1) is used in discussing the expansion of the heat 
kernel on a factor space of the upper-half-plane U, in the presence of elliptic fixed 
points. Donnelly (1979) showed that the integrated heat kernel on M = U/T & 
given by 

The first term is the integral over M of the heat kernel on U and the second is the 
effect of the elliptic fixed points, y p  = id. 

The asymptotic expansion of K (  t )  in powers of t then follows easily after per- 
forming the sum over m. (Actually, Donnelly does not carry out this procedure. The 
calculation can be found in an appendix in Balazs and Voros, 1986.) It is possible to 
generalize the analysis to the twisted case P # 0 (Dowker, unpublished). 

An alternative form to (24) (or (26)) is provided by 

which can be verified algebraically by factoring the denominator on the right into 
linear factors involving the pth roots of unity, expanding the fraction into a sum of 
partial fractions and then recombining these in pairs. 

The left-hand side of (29) is the Molien generating function, M ( t , . Z p ) ,  for the 
cyclic group 2, considered as a subgroup of SO(2). 

Generally, for any finitedimensional N x N-matrix group, T, 

where d, is the number of linearly independent, invariant homogeneous polynomials 
of degree I in the N variables acted upon the elements of 

Stanley (1979) derives (29) by constructing the ring of invariant polynomials from 
first principles. 

A standard example of (30) is for T a finite-dimensional subgroup of SO(3). Then 
if we ask for the number of independent, invariant spherical harmonics of degree I one 
finds that it is given in terms of the generating function H ( t ,  r) = (1 - t Z ) M ( t , T ) ,  
for r c SO(3). (Polya and Meyer 1949, Meyer 1954). 

We remark that in all these formulae we see the SU(2) character generating 
function (essentially a dual transformation on the representation labels), 

(e.g. Burnside 1911). 

Polyhedral harmonics have been early considered by Poole (1932), Laporte (1948) 
and others. For G !z SO(4) (or spin(4)) we can use G e SU(2)xSU(2) to give 
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a theory of ‘polyhedral hyperspherical harmonics’ and an extension to spinor-valued 
objects iF possible. 

Finally we just mention that similar sums occur in the theory of the Hirzebruch 
signature (Hirzebruch 19123, Zagier and Hirzebruch 1974, DOMelly 1977) especially 
the notion of the ‘defect’ and its relation to number theory. 
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